Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Sci Total Environ ; 924: 171604, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461978

RESUMO

Rivers not only function as a conduit for the delivery of terrestrial constituents to oceans, but they also serve as an essential medium for biogeochemical processing of the constituents. While extensive research has been conducted on carbon transport in many rivers, little is known about carbon transformation in engineered rivers reconnected with their floodplain network. Being the largest distributary of the levee-confined Mississippi River (MR), the Atchafalaya River (AR) carries 25 % of the MR water, flowing through North America's largest freshwater swamp basin and emptying into the Gulf of Mexico. Previous studies reported that this 200-km long, 5-30-km wide river basin can remove a substantial amount of riverine nutrients and organic carbon. This study aimed to test the hypothesis that the AR emits significantly higher CO2 into the atmosphere as it flows through its extensive floodplain network than the levee-confined MR does. From January 2019 to December 2021, we conducted biweekly - monthly in-situ measurements in the lower AR at Morgan City and in the lower Mississippi River at Baton Rouge. Field measurements included partial pressure of dissolved CO2 (pCO2), water temperature, chlorophyll a, colored dissolved organic matter, dissolved oxygen, pH, and turbidity. During each field sampling, water samples were collected and analyzed for concentrations of dissolved organic and inorganic carbon (DOC and DIC). Mass transport of DOC and DIC and outgassing of CO2 were quantified for the two rivers. We found that pCO2 levels were significantly higher in the AR (mean: 3563 µatm; min-max: 1130-8650 µatm) than those in the MR (1931 µatm, 836-3501 µatm), resulting in a doubled CO2 outgassing rate in the AR (486 mmol m2 d-1) than in the MR (241 mmol m2 d-1). The AR had higher DOC (8.5 mg L-1) but lower chlorophyll a (153.9 AFU) when compared with the MR (7.5 mg L-1 and 164.0 AFU). Water temperature was constantly higher in the AR than in the MR, especially during the wintertime. Since the Mississippi-Atchafalaya River system is among the world's largest and most engineered river systems, our assessment offers a field case study to inform on the potential implications of reconnecting rivers with their floodplains networks.

2.
Sci Total Environ ; 912: 169286, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104841

RESUMO

Our study considered the excavation of sand and gravel, which modifies the landscapes of riparian ecosystems. It promotes the creation of water bodies with surrounding vegetation, but it also results in the loss of natural habitats. We investigated the species richness, composition, and abundance of aquatic and terrestrial breeding birds and their interaction with three habitat types: managed and abandoned flooded pits, and oxbow lakes. We surveyed 117 sites in medium-sized river valleys in the foreground of the Bohemian Massif (Czech Republic), and in the Carpathian Mountains (Poland, Slovakia) in 2022. Flooded pits were suitable for open-water and colonial birds. Managed flooded pits were also suitable for early successional land birds, but they did not provide habitat for birds that use marshes and wet meadows, or riparian woodlands. The majority of species preferred to breed in oxbow lakes with riparian forests and these areas hosted the highest number of threatened species. We concluded that high levels of disturbance in riparian ecosystems promoted some birds (e.g. colonial or breeding in early-successional habitats), but it negatively affected the overall bird diversity, and it led to a species composition shift with the elimination of taxa associated with indigenous riparian habitats. The importance of flooded pits increases with subsequent plant succession. Our results indicate that gravel or sand mine pits, although beneficial for some taxa, are not substitutes for natural habitats in riparian ecosystems, as they do not support birds breeding in indigenous riparian habitats. Natural oxbow lakes with riparian forests are habitats that need to be preserved to effectively promote local biodiversity.


Assuntos
Ecossistema , Rios , Animais , Areia , Monitoramento Ambiental , Melhoramento Vegetal , Biodiversidade , Florestas , Aves , Água
3.
Sci Total Environ ; 886: 164024, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172853

RESUMO

Driven by surges in global gold prices and additional socio-economic factors, artisanal small-scale gold mining (ASGM) in the Global South is increasing and driving emissions of significant quantities of mercury (Hg) into the air and freshwater. Hg can be toxic to animal and human populations and exacerbate the degradation of neotropical freshwater ecosystems. We examined drivers of Hg accumulation in fish that inhabit oxbow lakes of Peru's Madre de Dios, a region with high biodiversity value and increasing human populations that depend on ASGM. We hypothesized that fish Hg levels would be driven by local ASGM activities, by environmental Hg exposure, by water quality, and by fish trophic level. We sampled fish in 20 oxbow lakes spanning protected areas and areas subject to ASGM during the dry season. Consistent with previous findings, Hg levels were positively associated with ASGM activities, and were higher in larger, carnivorous fish and where water had lower dissolved oxygen levels. In addition, we found a negative relationship between fish mercury levels associated with ASGM and the occurrence of the piscivorous giant otter. The link between fine-scale quantification of spatial ASGM activity and Hg accumulation, as indicated by the result that in the lotic environment, localized effects of gold mining activities are stronger drivers (77 % model support) of Hg accumulation than environmental exposure (23 %) constitutes a novel contribution to a growing body of literature on Hg contamination. Our findings provide additional evidence of high Hg exposure risks to neotropical human and top carnivore populations subject to the impacts of ASGM, which depend on freshwater ecosystems undergoing gradual degradation. The documented spatial variation in Hg accumulation and increased Hg levels in carnivorous fish should serve as a warning to human communities in Madre de Dios to avoid the proximity of high-intensity gold mining areas and minimize local carnivorous fish consumption.


Assuntos
Mercúrio , Lontras , Animais , Humanos , Mercúrio/análise , Lagos , Ecossistema , Ouro , Mineração , Peixes/metabolismo , Lontras/metabolismo , Monitoramento Ambiental
4.
Environ Sci Pollut Res Int ; 30(24): 66002-66020, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37093376

RESUMO

Riverine floodplains are highly dynamic and the most vulnerable space on Earth particularly in flat alluvial plains of major river systems. Suitable site selection for sustainable human settlements in active floodplain areas is a critical task for decision-makers in terms of quality of lithology, ecologically fragile landmass, climate-induced hazards, immense population pressure, and environmental conservation issues. This research introduces a methodology for settlement suitability zone (SSZ) that employs GIS-based multi-criteria decision-making (MCDM) techniques. As a case study, an altered hydrological regime of the lower Ganga riparian zone was chosen to identify the SSZ as these areas are the most susceptible to riverine hazards. Twelve significant variables reflecting on topography, climate, landscape, and environment have been selected in the multi-criteria evaluation platform. The CRiteria Importance Through Intercriteria Correlation (CRITIC) method is adopted to specify the weights of the criteria and utilize an inverse distance-weighted (IDW) spatial interpolation technique to generate an SSZ map in a GIS environment. The study zone is spatially quantified into five categories, from unsuitable to high-suitable with a natural breaks (Jenks) classification method. Subsequently, the final results are validated through a receiver operating characteristics (ROC) curve using randomly selected 56 hazard-exposed location points. The outcome revealed that 8.45% of the riparian area falls under unsuitable, 21.87% under low-suitable, and 33.27% under moderate-suitable for locating human settlements. The generally suitable and high-suitable categories account for 36.40% of the total study zone. A spatial sensitivity analysis is also applied to gauge the influence of each parameter on the MCDM outcomes. The SSZ mapping results from this study can help local authorities to plan for sustainable settlement development in environmentally fragile areas.


Assuntos
Técnicas de Apoio para a Decisão , Sistemas de Informação Geográfica , Humanos , Análise Espacial , Desenvolvimento Sustentável , Clima
5.
J Environ Manage ; 337: 117665, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940604

RESUMO

The homogenization of fire regimes in a landscape may imply a temporal reduction in the availability of resources, such as flowers and fruits, which affect the fauna, as well as ecosystem services. We hypothesized that maintaining mosaic burning regimes, and thereby pyrodiversity, can diversify phenological patterns, ensuring year-round availability of flowers and fruits. Here we monitored open grassy tropical savanna phenology under different historical fire frequencies and fire seasons in a highly heterogeneous landscape in an Indigenous Territory in Brazil. We evaluated phenological patterns of tree and non-tree plants through monthly surveys over three years. These two life forms responded differently to climate and photoperiod variables and to fire. Different fire regimes led to a continuous availability of flowers and fruits, due to the complementarity between tree and non-tree phenologies. Late-season fires are supposed to be more devastating, but we did not detect a significant reduction in flower and fruit production, especially under moderate fire frequency. However, late burning in patches under high frequency resulted in a low availability of ripe fruits in trees. The fruiting of non-tree plants in patches under low fire frequency and early burning ensure ripe fruit, when there are practically no trees fruiting in the entire landscape. We conclude that maintaining a seasonal fire mosaic should be prioritized over historical fire regimes, which lead to homogenization. Fire management is best conducted between the end of the rainy season and the beginning of the dry season, when the risk of burning fertile plants is lower.


Assuntos
Ecossistema , Incêndios , Frutas , Pradaria , Reprodução , Flores
6.
Environ Pollut ; 324: 121356, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858097

RESUMO

Industrialised rivers contain legacy contaminants stored in their sediments and floodplain soils which may inhibit attainment of environmental quality criteria. The River Fal catchment, SW England, is impacted by inputs from uranium mining and clay production and serves as an exemplar for understanding the consequences of medium-term process dynamics in contaminated basins. Radionuclides were determined, by gamma spectroscopy, in six cores from the river floodplain with the aim of quantifying the activities of 238U, and its decay products, and the bomb fallout radionuclides137Cs and 241Am. Activity concentrations of 238U implied inputs from mining, accentuated by flood events and historic industrial accidents, whereas 210Pb activities included a significant input of unsupported 210Pb linked to processed mine spoil. The radionuclide inventories did not decrease systematically downstream revealing evidence of attenuation of particulate radionuclides within the river floodplain sediment column. Storage of legacy contaminants in fluvial systems, at levels in excess of contemporary environmental quality guidelines, emphasises the challenges posed by changing climatic conditions. This scenario raises significant consequences for the management of uranium-contaminated, fertile riverine floodplains within Europe.


Assuntos
Sedimentos Geológicos , Urânio , Sedimentos Geológicos/química , Urânio/análise , Chumbo , Rios/química , Mineração , Monitoramento Ambiental
7.
Appl Environ Microbiol ; 89(3): e0201022, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36847567

RESUMO

In proglacial floodplains, glacier recession promotes biogeochemical and ecological gradients across relatively small spatial scales. The resulting environmental heterogeneity induces remarkable microbial biodiversity among proglacial stream biofilms. Yet the relative importance of environmental constraints in forming biofilm communities remains largely unknown. Extreme environmental conditions in proglacial streams may lead to the homogenizing selection of biofilm-forming microorganisms. However, environmental differences between proglacial streams may impose different selective forces, resulting in nested, spatially structured assembly processes. Here, we investigated bacterial community assembly processes by unraveling ecologically successful phylogenetic clades in two stream types (glacier-fed mainstems and non-glacier-fed tributaries) draining three proglacial floodplains in the Swiss Alps. Clades with low phylogenetic turnover rates were present in all stream types, including Gammaproteobacteria and Alphaproteobacteria, while the other clades were specific to one stream type. These clades constituted up to 34.8% and 31.1% of the community diversity and up to 61.3% and 50.9% of the relative abundances in mainstems and tributaries, respectively, highlighting their importance and success in these communities. Furthermore, the proportion of bacteria under homogeneous selection was inversely related to the abundance of photoautotrophs, and these clades may therefore decrease in abundance with the future "greening" of proglacial habitats. Finally, we found little effect of physical distance from the glacier on clades under selection in glacier-fed streams, probably due to the high hydrological connectivity of our study reaches. Overall, these findings shed new light on the mechanisms of microbial biofilm assembly in proglacial streams and help us to predict their future in a rapidly changing environment. IMPORTANCE Streams draining proglacial floodplains harbor benthic biofilms comprised of diverse microbial communities. These high-mountain ecosystems are rapidly changing with climate warming, and it is therefore critical to better understand the mechanisms underlying the assembly of their microbial communities. We found that homogeneous selection dominates the structuring of bacterial communities in benthic biofilms in both glacier-fed mainstems and nonglacier tributary streams within three proglacial floodplains in the Swiss Alps. However, differences between glacier-fed and tributary ecosystems may impose differential selective forces. Here, we uncovered nested, spatially structured assembly processes for proglacial floodplain communities. Our analyses additionally provided insights into linkages between aquatic photoautotrophs and the bacterial taxa under homogeneous selection, potentially by providing a labile source of carbon in these otherwise carbon-deprived systems. In the future, we expect a shift in the bacterial communities under homogeneous selection in glacier-fed streams as primary production becomes more important and streams become "greener".


Assuntos
Ecossistema , Microbiota , Filogenia , Biodiversidade , Bactérias/genética , Biofilmes
8.
Urban Ecosyst ; 25(3): 773-795, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310660

RESUMO

Riparian zones are a vital interface between land and stream and are often the focus of stream restoration efforts to reduce nutrient pollution in waterways. Restoration of degraded stream channels often requires the removal of mature trees during major physical alteration of the riparian zone to reshape streambank topography. We assessed the impact of tree removal on riparian groundwater quality over space and time. Twenty-nine wells were installed across 5 sites in watersheds of the Washington D.C. and Baltimore, Maryland, USA metropolitan areas. Study sites encompassed a chronosequence of restoration ages (5, 10 and 20 years) as well as unrestored comparisons. Groundwater wells were installed as transects of 3 perpendicular to the stream channel to estimate nutrient uptake along groundwater flow paths. Groundwater samples collected over a 2-year period (2018-2019) were analyzed for concentrations of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), total dissolved nitrogen (TDN), and dissolved components of calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), sulfur (S) and other elements. Results showed some interesting patterns such as: (1) elevated concentrations of some nutrients and carbon in riparian groundwater of recently restored (5 year) sites; (2) decreasing linear trends in concentrations of TDN, K and S in groundwater during a 2 year shift from wet to dry conditions; (3) linear relationships between DOC (organic matter) and plant nutrients in groundwater suggesting the importance of plant uptake and biomass as sources and sinks of nutrients; (4) increasing concentrations in groundwater along hydrologic flow paths from uplands to streams in riparian zones where trees were recently cut, and opposite patterns where trees were not cut. Riparian zones appeared to act as sources or sinks of bioreactive elements based on tree removal. Mean TDN, DOC, and S, concentrations decreased by 78.6%, 12.3%, and 19.3% respectively through uncut riparian zones, but increased by 516.9%, 199.7%, and 34.5% respectively through the 5-year cut transects. Ecosystem recovery and an improvement in groundwater quality appeared to be achieved by 10-20 years after restoration. A better understanding of the effects of riparian tree removal on groundwater quality can inform strategies for minimizing unintended effects of stream restoration on groundwater chemistry.

9.
Environ Monit Assess ; 194(12): 923, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36258132

RESUMO

This paper presents the groundwater quality assessment of the upper Brahmaputra floodplains of Assam on a seasonal basis. A total of 88 samples were analyzed for the presence of potentially toxic elements in two seasons. In addition, an attempt is made to identify any possible associated health risks to the residents via the drinking water pathway. The study reveals the presence of various potentially toxic elements, in particular, manganese, iron, nickel, and fluoride concentration exceeding the drinking water specifications set by BIS and WHO drinking water standards. The degree of groundwater contamination was assessed using the Water Quality Index, Heavy metal Pollution Index, Heavy metal Evaluation Index, and Degree of Contamination. The spatial distribution maps of groundwater quality were prepared using geographical information system. The non-carcinogenic health risk was evaluated using hazard quotients and hazard index as per the United States Environmental Protection Agency methodology. The hazard quotient of fluoride and manganese have values > 1, which exceeds USEPA recommended benchmark. The health risk assessment identified that the risk was highest during the pre-monsoon season, and the child population is more vulnerable to non-carcinogenic risk than the adults. Findings of cancer risk identified that pre-monsoon groundwater samples from the Golaghat District pose the highest health risks in the upper Brahmaputra floodplains. The risk is highest in the southwest of the study area, followed by the south and then by the north.


Assuntos
Água Potável , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Criança , Adulto , Humanos , Qualidade da Água , Fluoretos , Manganês , Níquel , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise , Medição de Risco , Ferro , Índia
10.
Front Microbiol ; 13: 913453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979497

RESUMO

Ammonia oxidation is the rate-limiting first step of nitrification and a key process in the nitrogen cycle that results in the formation of nitrite (NO2 -), which can be further oxidized to nitrate (NO3 -). In the Amazonian floodplains, soils are subjected to extended seasons of flooding during the rainy season, in which they can become anoxic and produce a significant amount of methane (CH4). Various microorganisms in this anoxic environment can couple the reduction of different ions, such as NO2 - and NO3 -, with the oxidation of CH4 for energy production and effectively link the carbon and nitrogen cycle. Here, we addressed the composition of ammonium (NH4 +) and NO3 --and NO2 --dependent CH4-oxidizing microbial communities in an Amazonian floodplain. In addition, we analyzed the influence of environmental and geochemical factors on these microbial communities. Soil samples were collected from different layers of forest and agroforest land-use systems during the flood and non-flood seasons in the floodplain of the Tocantins River, and next-generation sequencing of archaeal and bacterial 16S rRNA amplicons was performed, coupled with chemical characterization of the soils. We found that ammonia-oxidizing archaea (AOA) were more abundant than ammonia-oxidizing bacteria (AOB) during both flood and non-flood seasons. Nitrogen-dependent anaerobic methane oxidizers (N-DAMO) from both the archaeal and bacterial domains were also found in both seasons, with higher abundance in the flood season. The different seasons, land uses, and depths analyzed had a significant influence on the soil chemical factors and also affected the abundance and composition of AOA, AOB, and N-DAMO. During the flood season, there was a significant correlation between ammonia oxidizers and N-DAMO, indicating the possible role of these oxidizers in providing oxidized nitrogen species for methanotrophy under anaerobic conditions, which is essential for nitrogen removal in these soils.

11.
Clim Dyn ; 59(5-6): 1401-1414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971539

RESUMO

Extant climate observations suggest the dry season over large parts of the Amazon Basin has become longer and drier over recent decades. However, such possible intensification of the Amazon dry season and its underlying causes are still a matter of debate. Here we used oxygen isotope ratios in tree rings (δ18OTR) from six floodplain trees from the western Amazon to assess changes in past climate. Our analysis shows that δ18OTR of these trees is negatively related to inter-annual variability of precipitation during the dry season over large parts of the Amazon Basin, consistent with a Rayleigh rainout model. Furthermore δ18OTR increases by approximately 2‰ over the last four decades (~ 1970-2014) providing evidence of an Amazon drying trend independent from satellite and in situ rainfall observations. Using a Rayleigh rainout framework, we estimate basin-wide dry season rainfall to have decreased by up to 30%. The δ18OTR record further suggests such drying trend may not be unprecedented over the past 80 years. Analysis of δ18OTR with sea surface temperatures indicates a strong role of a warming Tropical North Atlantic Ocean in driving this long-term increase in δ18OTR and decrease in dry season rainfall. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-021-06046-7.

12.
Front Microbiol ; 13: 948165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003939

RESUMO

Glacier shrinkage opens new proglacial terrain with pronounced environmental gradients along longitudinal and lateral chronosequences. Despite the environmental harshness of the streams that drain glacier forelands, their benthic biofilms can harbor astonishing biodiversity spanning all domains of life. Here, we studied the spatial dynamics of prokaryotic and eukaryotic photoautotroph diversity within braided glacier-fed streams and tributaries draining lateral terraces predominantly fed by groundwater and snowmelt across three proglacial floodplains in the Swiss Alps. Along the lateral chronosequence, we found that benthic biofilms in tributaries develop higher biomass than those in glacier-fed streams, and that their respective diversity and community composition differed markedly. We also found spatial turnover of bacterial communities in the glacier-fed streams along the longitudinal chronosequence. These patterns along the two chronosequences seem unexpected given the close spatial proximity and connectivity of the various streams, suggesting environmental filtering as an underlying mechanism. Furthermore, our results suggest that photoautotrophic communities shape bacterial communities across the various streams, which is understandable given that algae are the major source of organic matter in proglacial streams. Overall, our findings shed new light on benthic biofilms in proglacial streams now changing at rapid pace owing to climate-induced glacier shrinkage.

13.
Sci Total Environ ; 838(Pt 3): 156513, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679930

RESUMO

Heavily modified headwater streams and open ditches carry high nitrogen loads from agricultural soils that sustain eutrophication and poor water quality in downstream aquatic ecosystems. To remediate agricultural streams and reduce the export of nitrate (NO3-), phosphorus and suspended sediments, two-stage ditches with constructed floodplains can be implemented as countermeasures. By extending hydrological connectivity between the stream channel and riparian corridor within constructed floodplains, these remediated ditches enhance the removal of NO3- via the microbial denitrification process. Ten remediated ditches were paired with upstream trapezoidal ditches in Sweden across different soils and land uses to measure the capacity for denitrification and nitrous oxide (N2O) production and yields under denitrifying conditions in stream and floodplain sediments. To examine the controls for denitrification, water quality was monitored monthly and flow discharge continuously along reaches. Floodplain sediments accounted for 33 % of total denitrification capacity of remediated ditches, primarily controlled by inundation and stream NO3- concentrations. Despite reductions in flow-weighted NO3- concentrations along reaches, NO3- removal in remediated ditches via denitrification can be masked by inputs of NO3--rich groundwaters, typical of intensively managed agricultural landscapes. Although N2O production rates were 50 % lower in floodplains compared to the stream, remediated ditches emitted more N2O than conventional trapezoidal ditches. Higher denitrification rates and reductions of N2O proportions were predicted by catchments with loamy soils, higher proportions of agricultural land use and lower floodplain elevations. For realizing enhanced NO3- removal from floodplains and avoiding increased N2O emissions, soil type, land use and the design of floodplains need to be considered when implementing remediated streams. Further, we stress the need for assessing the impact of stream remediation in the context of broader catchment processes, to determine the overall potential for improving water quality.


Assuntos
Desnitrificação , Óxido Nitroso , Agricultura , Ecossistema , Nitratos/análise , Nitrogênio/análise , Óxido Nitroso/análise , Solo
14.
J Environ Manage ; 317: 115413, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35640403

RESUMO

Topographic variation within fluvial systems is essential for providing a mosaic of physical habitats and supporting the dynamic hydraulic, geochemical, and biological processes that determine both aquatic and riparian ecosystem function. In highly-modified rivers through both urban and rural settings, the physical heterogeneity of alluvial channels has been diminished by anthropogenic activities. As riparian areas are increasingly under pressure from agricultural and urban development, identifying the geomorphic controls on physical heterogeneity through these environments is critical. In this study, we use the bed coefficient of variation (CV) extracted from a high-resolution bathymetric LiDAR survey as a dimensionless metric for topographic variation and physical heterogeneity over 100 km of the Boise River corridor that spans an urban-rural gradient. Our CV results for both the streambed and channel demonstrate that the average topographic variation of reaches in urban areas is 22-25% lower than reaches located in rural areas along the same river. While these results initially support the application of the urban stream syndrome hypothesis, CV values had similar magnitudes in both urban and rural reaches suggesting there is a dominant control on topographic variation that was not directly related to urban land use. Analysis of CV values relative to normalized levee width indicates that the causative driver of morphologic simplification in the channel was lateral constraints from levees. In the Boise River, topographic variation increased linearly with normalized levee widths that ranged between 50% and >300% of the average channel width. Further, topographic variation was maximized in reaches where flow expansion during high discharge inundated between 1 and 2 times the average channel width (approximately 65-70% of the available floodplain). Our simple and objective watershed-scale approach leverages high-resolution topography data to identify reaches of high physical heterogeneity for river conservation, as well as help guide environmental flow releases in managed rivers.


Assuntos
Ecossistema , Rios , Agricultura
15.
Ecol Appl ; 32(6): e2591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35343023

RESUMO

Large dams and their removal can profoundly affect riparian ecosystems by altering flow and sediment regimes, hydrochory, and landform dynamics, yet few studies have documented these effects on downstream plant communities. Ecological theory and empirical results suggest that by altering disturbance regimes, reducing hydrochory, and shifting communities to later successional stages, dams reduce downstream plant diversity. Dam removal could reverse these processes, but the release of large volumes of sediment could have unexpected, transient effects. Two large dams were removed on the Elwha River in Washington State, USA, from 2011 to 2014, representing an unprecedented opportunity to study large dam removal effects on riparian plant communities. Our research objectives were to determine: (1) whether the Elwha River dams were associated with lower downstream plant diversity and altered species composition across riparian landforms pre-dam removal, and (2) whether dam removal has begun to restore downstream diversity and composition. To address these objectives, we compared plant species richness and community composition in river segments above, below, and between the two dams. Plant communities were sampled twice before (2005 and 2010) and four times after (2013, 2014, 2016, and 2017) the start of dam removal, with 2013 and 2014 sampled while the upstream dam removal was ongoing. Prior to dam removal, native species richness was 41% lower below dams compared with the upstream segment; 6 years after dam removal began, it increased ~31% between the dams, whereas nonnative species richness and cover were not apparently affected by dams or their removal. Deposition caused by large volumes of released reservoir sediment had mixed effects on native species richness (increased on floodplains, decreased elsewhere) in the lowest river segment. Plant community composition was also different downstream from dams compared with the upstream reference, and has changed in downstream floodplains and bars since dam removal. In the long term, we expect that diversity will continue to increase in downstream river segments. Our results provide evidence that (1) large dams reduce downstream native plant diversity, (2) dam removal may restore it, and (3) given the natural dynamics of riparian vegetation, long-term, multiyear before-and-after monitoring is essential for understanding dam removal effects.


Assuntos
Ecossistema , Rios , Plantas , Washington
16.
Sci Total Environ ; 810: 152207, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890660

RESUMO

Efforts on socio-hydrology science have been promoted to solve challenges faced by contemporary water management. This study aims to better understand the co-evolution of human-water systems in floodplains. Specifically, farmers' opinions on flooding, dike effects, and living conditions in different dike systems in the Vietnamese Mekong Delta floodplain are compared to explore possible connections between human perceptions and dike development processes by employing in-depth interviews of 7 officials and oral surveys of 100 farmers supported by a literature review. Local specific contexts have resulted in various dike systems. One mixed-low-dike-dominant, two mixed-high-dike-dominant, and one only-high-dike zones are found in the research area. High dikes have been operating in an ad hoc response to short-term demands in the mixed-dike zones while strictly following a provincial schedule in the only-high-dike zone. The Fisher-Freeman-Halton test was used to compare the farmers' opinions on diverse questions between the zones. Dike development processes are suggested to influence livelihood, transportation, perceived flood peak changes and perceived causes for declining fish stocks. Although it remains challenging to directly attribute these differences to the dike development processes themselves, a new interrelated dike-flood-livelihood feedback loop is proposed for floodplains. Insights obtained are expected to support decision makers formulating tailored climate change adaptation policies to the different socio-hydrological zones. Our findings also contribute to the current understanding of international scientific communities on the human-water system and provide materials to further develop socio-hydrological models that strengthen our predictive capability on how the complex system evolves in floodplains.


Assuntos
Inundações , Hidrologia , Povo Asiático , Mudança Climática , Fazendeiros , Humanos
17.
J Environ Manage ; 304: 114221, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34891054

RESUMO

Floods are recognized as the costliest type of natural hazard both worldwide and in the United States, with projected increases in frequency and magnitude in the absence of effective adaptation strategies. In the fall of 2018, Hurricane Florence made landfall in southeastern North Carolina, USA, bringing record rainfall and resulting in widespread inundation that impacted many areas outside of the federally designated Special Flood Hazard Area (SFHA). Much of this flooding was from inland pluvial inundation, which is an understudied component of coastal risk and vulnerability assessments primarily due to the scarcity of infrastructure data and historically lower flooding recurrence rates. This has resulted in severe damages in areas that residents and local officials considered at low risk from flooding. Using nearly-coincident high-spatial, high-temporal resolution CubeSat satellite imagery, we quantified the areal extent of post-Hurricane Florence floodwater within and beyond the 100-year floodplain (SFHA) and the proportion of residential structures exposed to flooding within an eight-county study area. We propose a novel approach to estimate flood risk resulting from this singular event (termed an actualized risk index) when compared to a published empirical model of vulnerability. We show that 24.3% of detected floodwater was outside the 100-year floodplain, 43.4% of exposed residential structures are outside the 100-year floodplain, and communities of highest vulnerability are not only along the coast but also inland along the Cape Fear, Northeast Cape Fear, Trenton, and Neuse Rivers. This suggests that the SFHA may not adequately show the spatial distribution of pluvial flood risk in riverine areas, and that misunderstanding of this risk has led to a pattern of development in which houses have a higher than expected risk of flooding. Moreover, this additional flood risk may disproportionately affect lower-income residents of these largely rural areas. These results have important implications in light of recent policy guidance in southeastern USA states that mandate that predictive coastal vulnerability assessments to sea level rise be conducted relative to 100-year SFHA zones.


Assuntos
Tempestades Ciclônicas , Inundações , Previsões , North Carolina , Rios , Imagens de Satélites
18.
Sci Total Environ ; 807(Pt 2): 151461, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34748831

RESUMO

The Ganga-Brahmaputra floodplains constitute a complex system that is vulnerable to arsenic recycling owing to its geomorphic sensitivity, aquifer profiles, high meandering scars and extreme sediment deposition, along with extreme monsoonal disturbances; and are subjected to significant alterations in arsenic recycling. We have put an effort to delineate the similarities and dissimilarities pertaining to the arsenic prevalence, origin and mobilization in the two hotspots, namely the Mid-Gangetic Floodplains (MGFP) and the Brahmaputra Floodplains (BFP). Pertaining to this, we collected 384 representative water samples for hydrogeochemical investigations, multivariate analyses, and saturation status based predictive modelling, with BFP having a maximum concentration of arsenic (As) reaching to almost 97.9 µgL-1 and MGFP having a maximum concentration of 50.1 µgL-1. Seasonality impelled changes and conforming riverine recharges are leading major ionic differentiations in both the floodplains across seasons. Meandering and aquifer dynamics control As prevalence in the MGFP and BFP, respectively. Non-interdependent HCO3- recharge mediated As-recycling was found in the BFP. Carbonate weathering is dominant in the MGFP, while both carbonate and silicate weathering take precedence in the BFP. Multivariate analysis hints at fertilizer influence on As mobilization in the MGFP. Reductive hydrolysis of Fe-OOH mediated As-release is more prominent in the BFP. Seasonal arsenic fluctuations are going to have more climatic dependency in near future owing to the increasing erratic rains, pumping and recharge events. Erratic precipitation will provoke immediate response in both floodplains in terms of As mobilization which urgently needs attention to counter increasing arsenic vulnerability.


Assuntos
Arsênio , Água Subterrânea , Fertilizantes , Chuva , Tempo (Meteorologia)
19.
Ecol Evol ; 11(20): 13780-13792, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34707817

RESUMO

Installation of feral pig (Sus scrofa) exclusion fences to conserve and rehabilitate coastal floodplain habitat for fish production and water quality services remains untested. Twenty-one floodplain and riverine wetlands in the Archer River catchment (north Queensland) were surveyed during postwet (June-August) and late-dry season (November-December) in 2016, 2017, and 2018, using a fyke net soaked overnight (~14-15 hr) to test: (a) whether the fish assemblage are similar in wetlands with and without fences; and (b) whether specific environmental conditions influence fish composition between fenced and unfenced wetlands. A total of 6,353 fish representing twenty-six species from 15 families were captured. There were no wetland differences in fish assemblages across seasons, years and for fenced and unfenced (PERMANOVA, Pseudo-F < 0.589, p < .84). Interestingly, the late-dry season fish were far smaller compared to postwet season fish: a strategy presumably in place to maximize rapid disposal following rain and floodplain connectivity. In each wetland, a calibrated Hydrolab was deployed (between 2 and4 days, with 20 min logging) in the epilimnion (0.2 m) and revealed distinct diel water quality cycling of temperature, dissolved oxygen and pH (conductivity represented freshwater wetlands), which was more obvious in the late-dry season survey because of extreme summer conditions. Water quality varied among wetlands in terms of the daily amplitude and extent of daily photosynthesis recovery, which highlights the need to consider local conditions and that applying general assumptions around water quality conditions for these types of wetlands is problematic for managers. Though many fish access wetlands during wet season connection, the seasonal effect of reduced water level conditions seems more overimprovised when compared to whether fences are installed, as all wetlands supported few, juvenile, or no fish species because they had dried completely regardless of the presence of fences.

20.
Ecol Evol ; 11(19): 12970-12988, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646446

RESUMO

This study presents the long-term evolution of two floodplains lakes (San Juana and Barbacoas) of the Magdalena River in Colombia with varying degree of connectivity to the River and with different responses to climate events (i.e., extreme floods and droughts). Historical limnological changes were identified through a multiproxy-based reconstruction including diatoms, sedimentation, and sediment geochemistry, while historical climatic changes were derived from the application of the Standardised Precipitation-Evapotranspiration Index. The main gradients in climatic and limnological change were assessed via multivariate analysis and generalized additive models. The reconstruction of the more isolated San Juana Lake spanned the last c. 500 years. Between c. 1,620 and 1,750 CE, riverine-flooded conditions prevailed as indicated by high detrital input, reductive conditions, and dominance of planktonic diatoms. Since the early 1800s, the riverine meander became disconnected, conveying into a marsh-like environment rich in aerophil diatoms and organic matter. The current lake was then formed around the mid-1960s with a diverse lake diatom flora including benthic and planktonic diatoms, and more oxygenated waters under a gradual increase in sedimentation and nutrients. The reconstruction for Barbacoas Lake, a waterbody directly connected to the Magdalena River, spanned the last 60 years and showed alternating riverine-wetland-lake conditions in response to varying ENSO conditions. Wet periods were dominated by planktonic and benthic diatoms, while aerophil diatom species prevailed during dry periods; during the two intense ENSO periods of 1987 and 1992, the lake almost desiccated and sedimentation rates spiked. A gradual increase in sedimentation rates post-2000 suggests that other factors rather than climate are also influencing sediment deposition in the lake. We propose that hydrological connectivity to the Magdalena River is a main factor controlling lake long-term responses to human pressures, where highly connected lakes respond more acutely to ENSO events while isolated lakes are more sensitive to local land-use changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...